LPAR6

LPAR6
Identifiers
Aliases LPAR6, ARWH1, HYPT8, LAH3, P2RY5, P2Y5, lysophosphatidic acid receptor 6
External IDs MGI: 1914418 HomoloGene: 55925 GeneCards: LPAR6
Targeted by Drug
lysophosphatidic acid[1]
RNA expression pattern
More reference expression data
Orthologs
Species Human Mouse
Entrez

10161

67168

Ensembl

ENSG00000139679

ENSMUSG00000033446

UniProt

P43657

Q8BMC0

RefSeq (mRNA)

NM_005767
NM_001162497
NM_001162498

NM_175116

RefSeq (protein)

NP_001155969.1
NP_001155970.1
NP_005758.2

NP_780325.1

Location (UCSC) Chr 13: 48.39 – 48.44 Mb Chr 14: 73.24 – 73.24 Mb
PubMed search [2] [3]
Wikidata
View/Edit HumanView/Edit Mouse

Lysophosphatidic acid receptor 6 also known as LPA6, P2RY5, and GPR87, is a protein that in humans is encoded by the LPAR6 gene.[4][5][6][7] LPA6 is a G protein-coupled receptor that binds the lipid signaling molecule lysophosphatidic acid (LPA).[8][9]

The protein encoded by this gene belongs to the family of G-protein coupled receptors, that are preferentially activated by adenosine and uridine nucleotides. This gene aligns with an internal intron of the retinoblastoma susceptibility gene in the reverse orientation.[7]

Role in hair growth/loss

In February 2008 researchers at the University of Bonn announced they have found the genetic basis of two distinct forms of inherited hair loss, opening a broad path to treatments for baldness. They found that mutations in the gene P2RY5 causes a rare, inherited form of hair loss called Hypotrichosis simplex. It is the first receptor in humans known to play a role in hair growth. The fact that any receptor plays a specific role in hair growth was previously unknown to scientists and with this new knowledge a focus on finding more of these genes may be able to lead to therapies for many different types of hair loss.[8]

See also

References

  1. "Drugs that physically interact with Lysophosphatidic acid receptor 6 view/edit references on wikidata".
  2. "Human PubMed Reference:".
  3. "Mouse PubMed Reference:".
  4. Adrian K, Bernhard MK, Breitinger HG, Ogilvie A (Sep 2000). "Expression of purinergic receptors (ionotropic P2X1-7 and metabotropic P2Y1-11) during myeloid differentiation of HL60 cells". Biochim Biophys Acta. 1492 (1): 127–38. doi:10.1016/S0167-4781(00)00094-4. PMID 11004484.
  5. Ralevic V, Burnstock G (Nov 1998). "Receptors for purines and pyrimidines". Pharmacol Rev. 50 (3): 413–92. PMID 9755289.
  6. Yanagida K, Masago K, Nakanishi H, Kihara Y, Hamano F, Tajima Y, Taguchi R, Shimizu T, Ishii S (Jun 2009). "Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6". J Biol Chem. 284 (26): 17731–41. doi:10.1074/jbc.M808506200. PMC 2719412Freely accessible. PMID 19386608.
  7. 1 2 "Entrez Gene: P2RY5 purinergic receptor P2Y, G-protein coupled, 5".
  8. 1 2 Pasternack SM, von Kügelgen I, Aboud KA, Lee YA, Rüschendorf F, Voss K, Hillmer AM, Molderings GJ, Franz T, Ramirez A, Nürnberg P, Nöthen MM, Betz RC (March 2008). "G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth". Nat. Genet. 40 (3): 329–34. doi:10.1038/ng.84. PMID 18297070.
  9. Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, Chun J (January 2010). "LPA Receptors: Subtypes and Biological Actions". Annual Review of Pharmacology and Toxicology. 50 (1): 157–186. doi:10.1146/annurev.pharmtox.010909.105753. PMID 20055701.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


This article is issued from Wikipedia - version of the 6/1/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.